Passion Dermatology: à pilot study for an intelligent self-assessment educational system
Abstract
The alarming shortage of dermatologists in the world poses a real problem in terms of access to medical expertise for the treatment of skin diseases. The PASSION Dermatology project, led by the University of Basel in Switzerland, seeks to provide a solution by combining artificial intelligence with teledermatology. The aim is to develop a Machine Learning algorithm capable of recognising skin lesions with different types of pigmentation, using data from several European, African and Asian countries to form a federated learning system. For Madagascar, which joined the project in 2020, the data is collected by a team of dermatologists via a collaborative teledermatology platform. The team has sent a total of 323 photos of atopic dermatitis/eczema, dermatophytosis, impetigo and scabies to the server. Currently, a local study is being carried out to improve the collection system in order to speed up the volume of data with a view to reaching 1,000 photos per year for model training with local photos for these 5 most common skin diseases in Madagascar. Using the algorithm developed in Switzerland and India, the model was evaluated using a confusion matrix to give a precision/recall performance result of 0.92/0.93 (n =2429). In addition, the Madagascar technical team is looking to improve this model and is currently developing an algorithm that will produce an intelligent computer-guided medical self-learning system, a new challenge for the African continent.
Knowledge Acquisition (computer), Supervised Machine Learning, Dermatology, AI (Artificial Intelligence), Telemedicine
References
T. Panch, P. Szolovits, R. Atun. \"Artificial intelligence, machine learning and health systems,\" J. Glob. Health 8 (2022), 020303.
P. Callier, O. Sandel, \"De l’intelligence artificielle à son application en médecine,\" Actualités Pharmaceutiques 60 (2021), 18 20.
D. Gruson. Le temps est compté. Soins, 64(2019), 29–57. Doi:10.1016/j.soin.2019.06.004
K. Marquet, F. Berthoud, J. Combaz, \"Introduction aux impacts environnementaux du numérique,\" 1024 (2019), 85 97.
L. Zhang, H.J. Gao, J. Zhang, B. Badami. \"Optimization of the Convolutional Neural Networks for Automatic Detection of Skin Cancer,\" Open Med (Wars) 15 (2020), 27 37.
T. Shanthi, R.S. Sabeenian, R. Anand. \"Automatic diagnosis of skin diseases using convolution neural network,\" Microprocessors Microsystems 76 (2020), 103074.
N. Hameed, A.M. Shabut, M.K. Ghosh, M.A. Hossain. \"Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques,\" Expert Syst. Appl. 141 (2020), 112961.
C-Y. Zhu, Y-K. Wang, H-P. Chen, K-L. Gao, C. Shu, J-C. Wang, et al. \"A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment,\" Front Med (Lausanne) 8 (2021), 626369.
S. Chan, V. Reddy, B. Myers, Q. Thibodeaux, N. Brownstone, W. Liao. \"Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations,\" Dermatol Ther (Heidelb) 10 (2020), 365 86.
R.R. Barbieri, Y. Xu, L. Setian, P.T. Souza-Santos, A. Trivedi, J. Cristofono, et al. \"Reimagining leprosy elimination with AI analysis of a combination of skin lesion images with demographic and clinical data,\" Lancet Reg. Health - Americas 9 (2022), 100192.
D. Hendrycks, K. Gimpel. \"Gaussian Error Linear Units (GELUs),\" [Internet] arXiv; 2023. Available on: http://arxiv.org/abs/1606.08415 Last visit: 2024/20/01
B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, et al. \"Visual Transformers: Token-based Image Representation and Processing for Computer Vision,\" [Internet] arXiv; 2020. Available from: http://arxiv.org/abs/2006.03677
C. Hsu, P. Gottfrois, Y. Xiao, D. Mavura, H. Hassan, F. Rapelanoro Rabenja., et al. \"Artificial intelligence (AI) in dermatology: An application in sub-Saharan Africa,\" J. Am. Acad. Dermatol. 85 (2021), AB183.
R. Karthik., T.S. Vaichole, S.K. Kulkarni, O. Yadav, F. Khan. \"Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification,\" Biomed. Signal Process. Control 73 (2022), 103406.
X. Zhang, K. Shu, S. Rajkumar, V. Sivakumar. \"Research on deep integration of application of artificial intelligence in environmental monitoring system and real economy,\" Environ. Impact Assess. Rev. 86 (2021), 106499.
Y. Yang, J. Wang, F. Xie, J. Liu, C. Shu, Y. Wang, et al. \"A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists,\" Comput. Biol. Med. 139 (2021), 104924.
J. Monnier, A.C.F. Gouabou, M. Serdi, R. Iguernaissi, C. Gaudy-Marqueste, J-L. Damoiseaux, et al. \"Détection automatique du mélanome : comparaison d’un algorithme fondé sur la caractérisation de l’aspect désordonné de lésions mélanocytaires mimant la pratique des dermatologues, avec une approche par CNN (Convolutional Neural Network),\" Ann. Dermatol. Venereol. FMC 1 (2021), A135.
J. Delyon, B. Schmauch, Y. Jacob, M. Galtier, A. Maire, C. Velter, et al. \"Développement d’un algorithme d’intelligence artificielle pour le diagnostic de mélanome à partir d’une banque d’images issues de la pratique courante,\" Ann. Dermatol. Venereol. FMC 1 (2021), A138 9.
A. Rasheed, I. Umar, S.H. Shirazi, Z. Khan, S. Nawaz, M. Shahzad. \"Automatic eczema classification in clinical images based on hybrid deep neural network,\" Comput. Biol. Med. 147 (2022), 105807.
A. Dautović, B. Đondraš, F. Dervišbegović, A. Smajović, E. Bečić, L.S. Bećirović, et al. \"Diagnosis of Atopic dermatitis Using Artificial Neural Network,\" IFAC-PapersOnLine 55 (2022), 51 5.
A.T. Young, M. Xiong, J. Pfau, M.J. Keiser, M.L. Wei. \"Artificial Intelligence in Dermatology: A Primer,\" J. Invest. Dermatol. 140 (2020), 1504 12.
M. Trakatelli., M. Bylaite-Bucinskiene., O. Correia, A. Cozzio., E. De Vries, L. Medenica., et al. \"Clinical assessment of skin phototypes: watch your words!\" Eur. J. Dermatol. 27 (2017), 615–9.
A.S. Adamson, A. Smith. \"Machine Learning and Health Care Disparities in Dermatology,\" JAMA Dermatol. (2018).
W.E. Roberts. \"Skin type classification systems old and new,\" Dermatol. Clin. 27 (2009), 529–33, viii.
S.S. Han, et al. \"Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders,\" J. Invest. Dermatol. 140 (2020), 1753–61.
C. Andrade, L.F. Teixeira, M.J.M. Vasconcelos, L. Rosado. \"Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images,\" J. Imaging 7 (2020), 2.
J. Kim, S. Rohmer. \"Electronic billing vs. paper billing: Dematerialization, energy consumption and environmental impacts,\" Electronics Goes Green 2012+ (2012), 1–4.
Y. Somemura. \"Key Roles of Green Technology for Access Network Systems,\" Opt. Fiber Commun. Conf. [Internet] San Diego, California: OSA; 2010. Available from https://opg.optica.org/abstract.cfm?URI=OFC-2010-OTuO6